Latest Activity In Study Groups

Join Your Study Groups

VU Past Papers, MCQs and More

We non-commercial site working hard since 2009 to facilitate learning Read More. We can't keep up without your support. Donate.

 In the mean value theorems, we discuss the continuity of a given function in the closed interval and the differentiability in the open interval. Why we don’t discuss its differentiability in the closed interval?

yeh is liay k aik function [a,b] k closed interval par continuous tou ho sakta hai, par [a,b] par differentiable nahin ho sakta...
example hai y = sqrt(1-x^2)
yeh function x = -1 and 1 par continuous hai....par -1 aur 1 par differentiable nahin hai....

yaad rakhain k mean value theorem mein hamain function k [a,b] k closed interval par differentiate honay ya nah honay se koi gharz nahin hoti....sirf [a,b] par continuous hona hi kafi hota hai...kyun k mean value theorem k mutabiq agar yeh teen cheezain satisfy hon
1. function is continuous on the closed interval [a,b].
2. function is differentiable on the open interval (a,b).
tou [a,b] interval k darmiaan aik aisa point c hota hai jahan par instantaneous rate of change at that point, equal hota hai, overall average rate of change k, in the interval (a,b).
average rate of change ka formula hai [ f(b)-f(a) ] / (b-a)...
jab k point c choon k [a,b] interval k darmiaan lie karta hai aur function hamara continous hai tou point c par function differentiable bhi ho ga...
is se yehi pata chalta hai k [a,b] par function k differentiable honay se hamain koi gharaz nahin hai....agar function end points par differentiable nah bhi ho tou tab bhi hamain koi faraq nahin paray ga aur ham mean value theorem apply kar sakain gay....

Views: 123

Replies to This Discussion

write in standard english


English main khud kar lon ga.


Looking For Something? Search Below

Top Trends 

Latest Activity

VIP Member Badge & Others

How to Get This Badge at Your Profile DP


Management: Admins ::: Moderators

Other Awards Badges List Moderators Group

© 2021   Created by + M.Tariq Malik.   Powered by

Promote Us  |  Report an Issue  |  Privacy Policy  |  Terms of Service