We are here with you hands in hands to facilitate your learning & don't appreciate the idea of copying or replicating solutions. Read More>>

www.vustudents.ning.com

 www.bit.ly/vucodes + Link For Assignments, GDBs & Online Quizzes Solution www.bit.ly/papersvu + Link For Past Papers, Solved MCQs, Short Notes & More

Dear Students! Share your Assignments / GDBs / Quizzes files as you receive in your LMS, So it can be discussed/solved timely. Add Discussion

# mth 301 4th assignment very dificult

plz elaburate here ur ideas and if any one have done then please snd the solution of assignment.

thank yara

+ How to Join Subject Study Groups & Get Helping Material?

+ How to become Top Reputation, Angels, Intellectual, Featured Members & Moderators?

+ VU Students Reserves The Right to Delete Your Profile, If?

Views: 107

.

+ http://bit.ly/vucodes (Link for Assignments, GDBs & Online Quizzes Solution)

+ http://bit.ly/papersvu (Link for Past Papers, Solved MCQs, Short Notes & More)

### Replies to This Discussion

kal karon ga

yar ap mje ye byao k 1st question ka method kiya hoga matlab x2+4y2=25   ye kiya hy agher simple integrate kerna hy to wo to ho jaye ga.

or 2nd question ka theorm wala question half hota hy half nahi

to pher uplod kar do na

thanks

o yaaaaaaaaaaaaaaaaar kr 2 koi assignment ka solution load may ne koshish ki hy lakin nahi bani mj se
1. To answer this question, split up the line integral into two pieces:
intc (x + 2y)dx and intc (x - y)dy.
Our parameter is t, 0<=t<=pi/4 (I assume, because your problem statement gives inf <-- t < 0, which diverges )
We need to convert dx, dy into dt:
x = 2 cos t --> dx = -2 sin t dt
y = 4 sin t --> dy = 4 cos t
Now,
intc (x + 2y)dx = int [ (2 cos t + 8 sin t) ( -2 sin t ) dt , 0<= t <=pi/4]
= int [ -4 costsint - 16sint^2, 0<= t <=pi/4 ]
And,
= intc (x - y)dy = int [ (2 cos t - 4 sin t) ( 4 cos t ) dt , 0<= t <=pi/4]
= int [ 8 cost^2 - 16 costsint, 0<= t <=pi/4 ]
So,
intc (x + 2y)dx + intc (x - y)dy = int[ 8 cost^2 - 20 costsint - 16 sint^2, 0<= t <=pi/4 ]
=-4 t + 5 cos(2 t) + 6 sin(2 t) + C, evaluated from 0<=t<=pi/4
= 1 - pi = 2.14

Q2
Note that the ellipse has standard form x²/2² + y²/(5/2)² = 1.
Denoting R as the region inside C, we have

∫c [(3x - 2y) dx + (3y + 2x) dx]
= ∫∫R [(∂/∂x)(3y + 2x) - (∂/∂y)(3x - 2y)] dA, by Green's Theorem
= ∫∫R (2 - (-2)) dA
= 4 ∫∫R dA
= 4 * (Area of the ellipse)
= 4 * (π * 2 * (5/2))
= 20π.

## Latest Activity

10 minutes ago
12 minutes ago
32 minutes ago
32 minutes ago
+ "αяsαℓ " Ќąƶµяɨ •" posted a discussion

### Computer Science

33 minutes ago
Musab Zahoor joined + M.Tariq Malik's group

### CS402 Theory of Automata

43 minutes ago
+ + + + Haniya + + + + + updated their profile
49 minutes ago
52 minutes ago
52 minutes ago
53 minutes ago
+ + + + Haniya + + + + + liked +++A++R+++'s discussion حسینہ تم ریاضی ھو
54 minutes ago

1

2

3