We are here with you hands in hands to facilitate your learning & don't appreciate the idea of copying or replicating solutions. Read More>>

Looking For Something at vustudents.ning.com? Click Here to Search

www.bit.ly/vucodes

+ Link For Assignments, GDBs & Online Quizzes Solution

www.bit.ly/papersvu

+ Link For Past Papers, Solved MCQs, Short Notes & More


Dear Students! Share your Assignments / GDBs / Quizzes files as you receive in your LMS, So it can be discussed/solved timely. Add Discussion

How to Add New Discussion in Study Group ? Step By Step Guide Click Here.

plz elaburate here ur ideas and if any one have done then please snd the solution of assignment.

 

thank yara

+ How to Follow the New Added Discussions at Your Mail Address?

+ How to Join Subject Study Groups & Get Helping Material?

+ How to become Top Reputation, Angels, Intellectual, Featured Members & Moderators?

+ VU Students Reserves The Right to Delete Your Profile, If?


See Your Saved Posts Timeline

Views: 107

.

+ http://bit.ly/vucodes (Link for Assignments, GDBs & Online Quizzes Solution)

+ http://bit.ly/papersvu (Link for Past Papers, Solved MCQs, Short Notes & More)

+ Click Here to Search (Looking For something at vustudents.ning.com?)

+ Click Here To Join (Our facebook study Group)

Replies to This Discussion

kal karon ga

yar ap mje ye byao k 1st question ka method kiya hoga matlab x2+4y2=25   ye kiya hy agher simple integrate kerna hy to wo to ho jaye ga.

or 2nd question ka theorm wala question half hota hy half nahi



to pher uplod kar do na

thanks

o yaaaaaaaaaaaaaaaaar kr 2 koi assignment ka solution load may ne koshish ki hy lakin nahi bani mj se
Q1 Answer
1. To answer this question, split up the line integral into two pieces:
intc (x + 2y)dx and intc (x - y)dy.
Our parameter is t, 0<=t<=pi/4 (I assume, because your problem statement gives inf <-- t < 0, which diverges )
We need to convert dx, dy into dt:
x = 2 cos t --> dx = -2 sin t dt
y = 4 sin t --> dy = 4 cos t
Now,
intc (x + 2y)dx = int [ (2 cos t + 8 sin t) ( -2 sin t ) dt , 0<= t <=pi/4]
= int [ -4 costsint - 16sint^2, 0<= t <=pi/4 ]
And,
= intc (x - y)dy = int [ (2 cos t - 4 sin t) ( 4 cos t ) dt , 0<= t <=pi/4]
= int [ 8 cost^2 - 16 costsint, 0<= t <=pi/4 ]
So,
intc (x + 2y)dx + intc (x - y)dy = int[ 8 cost^2 - 20 costsint - 16 sint^2, 0<= t <=pi/4 ]
=-4 t + 5 cos(2 t) + 6 sin(2 t) + C, evaluated from 0<=t<=pi/4
= 1 - pi = 2.14



Q2
Note that the ellipse has standard form x²/2² + y²/(5/2)² = 1.
Denoting R as the region inside C, we have

∫c [(3x - 2y) dx + (3y + 2x) dx]
= ∫∫R [(∂/∂x)(3y + 2x) - (∂/∂y)(3x - 2y)] dA, by Green's Theorem
= ∫∫R (2 - (-2)) dA
= 4 ∫∫R dA
= 4 * (Area of the ellipse)
= 4 * (π * 2 * (5/2))
= 20π.

RSS

© 2020   Created by + M.Tariq Malik.   Powered by

Promote Us  |  Report an Issue  |  Privacy Policy  |  Terms of Service

.