Total marks: 20
Lecture # 23 to 30
Due date: July 17, 2014
DON’T MISS THESE Important instructions:
Tags:
Arshad Bhai, In fourth line of Q3 correction is required.......
Answer # 1:
Equation of the curve in polar co-ordinates is r2=-4sin2θ
(i) Symmetry about the Initial Line.
r2=-4sin2θ
Remember that sine is an odd function
Put (r,-θ) in equation
r2=-4sin2 (-θ)
r2=-4sin (-2θ)
r2=4sin2θ
This equation is not symmetry about initial line
(ii) Symmetry about the Pole
r2=-4sin2θ
Put (-r, θ) in equation
(-r) 2 =-4sin2θ
r2=-4sin2θ
This equation is symmetry about pole
rdrdθ ko dudθ main q convert kia haiiiiiiiiiiiiii???????????????????
Q:1:- Equation of the curve in polar co-ordinates is =-4sin2 discuss the symmetry of graph of this curve about.
Equation of the curve in polar co-ordinates is
=-4sin2θ
Check it
Q:1:- Equation of the curve in polar co-ordinates is =-4sin2 discuss the symmetry of graph of this curve about.
Initial line
Pole
Equation of the curve in polar co-ordinates is
=-4sin2θ
Symmetry about the Initial Line.
=-4sin2θ
sin is odd function.
Put (r, -θ) in equation
=-4sin2 (-θ)
=-4sin (-2θ)
=4sin2θ
this equation is not symmetry about initial line
Symmetry about the Pole
=-4sin2θ
Put (-r, θ) in equation
=-4sin2θ
=-4sin2θ
This equation is symmetry about pole
MTH301_Complete_Solution
Tariq Bro, you have uploaded two solution for 3rd question which one is correct?
Doc file solution or above mentioned?
Plz ans.....
© 2021 Created by + M.Tariq Malik. Powered by
Promote Us | Report an Issue | Privacy Policy | Terms of Service
We non-commercial site working hard since 2009 to facilitate learning Read More. We can't keep up without your support. Donate.
We are user-generated contents & non-commercial site. All product, videos, pictures & others contents on site don't seem to be beneath our Copyrights & belong to their respected owners & freely available on public domains. All Contents on site are for personal & non-commercial use.We believe in Our Policy & do according to them. If Any content is offensive in your Copyrights then please email at m.tariqmalik@gmail.com with copyright detail & We will happy to remove it immediately.
Management: Admins ::: Moderators
Awards Badges List | Moderators Group
All Members | Featured Members | Top Reputation Members | Angels Members | Intellectual Members | Criteria for Selection
Become a Team Member | Safety Guidelines for New | Site FAQ & Rules | Safety Matters | Online Safety | Rules For Blog Post