We are here with you hands in hands to facilitate your learning & don't appreciate the idea of copying or replicating solutions. Read More>>
MTH301 Calculus II Online Quiz No 03 Spring 2013 Date: 09 May to 13 May 2013
Tags:
+ Click Here To Join also Our facebook study Group.
..How to Join Subject Study Groups & Get Helping Material?...
+ http://bit.ly/vucodes (Link for Assignments, GDBs & Online Quizzes Solution)+ http://bit.ly/papersvu (Link for Past Papers, Solved MCQs, Short Notes & More)
Please all students related this subject Share your online Quizzes here to help each other.thanks
Quiz no 3
Question # 8 of 8 ( Start time: 08:30:38 PM )
For which of the following values of “x”, the partial derivative of “z=2/y(x-1)” exists? Select correct option:
Question # 7 of 8 ( Start time: 08:30:20 PM )
If the partial derivative (w.r.t ‘x’ or ‘y’) at any point on the surface: “z=f(x,y)” is zero, then tangent plane at that point will be--------to XY-plane.
Select correct option:
Question # 6 of 8 ( Start time: 08:26:58 PM )
If “y=Sinx” and “x=e^t” , then by Chain rule, (dy/dt) = --------.
Select correct option:
Question # 5 of 8 ( Start time: 08:26:20 PM )
For which of the following values of “y”, the partial derivative of “z=2/y(x-1)” exists?
Select correct option:
Question # 4 of 8 ( Start time: 08:23:37 PM )
If “y=f(x)” and “x=g(t)” , then by Chain rule, (dy/dt) =---------.
Select correct option:
Question # 3 of 8 ( Start time: 08:22:46 PM )
If “y=x+t”, “x=e^u” and “t=Sinu”, then by Chain’s rule, (dy/du) = ---------.
Select correct option:
Question # 2 of 8 ( Start time: 08:21:53 PM )
If the partial derivative (w.r.t ‘x’ or ‘y’) at any point on the surface: “z=f(x,y)” is Infinity, then tangent plane at that point will be--------to XY-plane.
Select correct option:
Question # 1 of 8 ( Start time: 08:21:09 PM )
If “y=Sint” and “t=e^(xu)” then which of the following is partial derivative of ‘y’ w.r.t ‘u’?
Select correct option:
sweet doll Gud keep it up & thanks for sharing ur quiz to help other students
Note for All Members: You don’t need to go any other site for this assignment/GDB/Online Quiz solution, Because All discussed data of our members in this discussion are going from here to other sites. You can judge this at other sites yourself. So don’t waste your precious time with different links.
i have also same to same this quiz...just 1 ques change
In space, the intersection of “z= Sinxy” and “x=b” gives a/an --------.
a Cosine curve
a Sine curve
straight line
another surface
dear it's very tough sub,boring & feding sub…I tried to searching same ques from net but I could not fine any where….so, it’s risky matter…don’t worry…let start.. Gud Luck..!
hi,
i find solved quiz no 3 of this subjective for you
Question # 8 of 8 ( Start time: 08:30:38 PM )
For which of the following values of “x”, the partial derivative of “z=2/y(x-1)” exists? Select correct option:
Question # 7 of 8 ( Start time: 08:30:20 PM )
If the partial derivative (w.r.t ‘x’ or ‘y’) at any point on the surface: “z=f(x,y)” is zero, then tangent plane at that point will be--------to XY-plane.
Select correct option:
Question # 6 of 8 ( Start time: 08:26:58 PM )
If “y=Sinx” and “x=e^t” , then by Chain rule, (dy/dt) = --------.
Select correct option:
Question # 5 of 8 ( Start time: 08:26:20 PM )
For which of the following values of “y”, the partial derivative of “z=2/y(x-1)” exists?
Select correct option:
Question # 4 of 8 ( Start time: 08:23:37 PM )
If “y=f(x)” and “x=g(t)” , then by Chain rule, (dy/dt) =---------.
Select correct option:
Question # 3 of 8 ( Start time: 08:22:46 PM )
If “y=x+t”, “x=e^u” and “t=Sinu”, then by Chain’s rule, (dy/du) = ---------.
Select correct option:
Question # 2 of 8 ( Start time: 08:21:53 PM )
If the partial derivative (w.r.t ‘x’ or ‘y’) at any point on the surface: “z=f(x,y)” is Infinity, then tangent plane at that point will be--------to XY-plane.
Select correct option:
1. Parallel
2. Perpendicular
Question # 1 of 8 ( Start time: 08:21:09 PM )
If “y=Sint” and “t=e^(xu)” then which of the following is partial derivative of ‘y’ w.r.t ‘u’?
Select correct option:
1) The first order partial derivative of “z=(1/Sinxy)” is continuous-----------.
only at (0,0)
somewhere
nowhere
everywhere
2) The function “z=f(x,y)” represents a surface in/on--------.
Plane
space
line
vector space in plane
3) The mixed 2nd order partial derivatives of “z=xy” is equal to -------.
x^2
y^2
xy
1
xy
4) For which of the following values of “y”, the partial derivative of “z=2/y(x-1)” exists?
R
R-{1}
R-{0}
R-{1,0}
5) If “y=Sint” and “t=e^(xu)” then which of the following is partial derivative of ‘y’ w.r.t ‘x’?
xtCost
-xtCost
utCost
-utCost
6) In space, the intersection of “z= Sinxy” and “x=b” gives a/an --------.
a Cosine curve
a Sine curve
straight line
another surface
7) The first order partial derivative of “z=Cos(x+y)” vanishes whenever (x+y) is ------------.
zero
equal to integral multiple of ‘pi’
equal to integral multiple of ‘pi/2’
infinty
8 ) If the partial derivative (w.r.t ‘x’ or ‘y’) at any point on the surface: “z=f(x,y)” is Infinity, then tangent plane at that point will be perpendicular to--------.
XY-plane
YZ-plane
XZ-plane
Any arbitrary plane
xSin(e^t)
xCos(e^t)
Sin(e^t)
Cos(e^t)
only at (0,0)
somewhere
zero
pi/2
equal to integral multiple of ‘pi’
XY-plane
YZ-plane
xy plane
XZ-plane
(dy/dx)+(dx/dt)
(dy/dx)-(dx/dt)
(dy/dx).(dx/dt)
R
R-{1}
R-{0}
R{1,0}
Plane
straight line
z = Sinxy
z = Cosxy
z = xy
z = Tanxy
aliraza gud keep it up & thanks for sharing
Note for All Members: You don’t need to go any other site for this assignment/GDB/Online Quiz solution, Because All discussed data of our members in this discussion are going from here to other sites. You can judge this at other sites yourself. So don’t waste your precious time with different links.
Bro, r U sure..it's right ans???????
© 2019 Created by + M.Tariq Malik. Powered by
Promote Us | Report an Issue | Privacy Policy | Terms of Service
We are user-generated contents site. All product, videos, pictures & others contents on vustudents.ning.com don't seem to be beneath our Copyrights & belong to their respected owners & freely available on public domains. We believe in Our Policy & do according to them. If Any content is offensive in your Copyrights then please email at m.tariqmalik@gmail.com or Contact us at contact Page with copyright detail & We will happy to remove it immediately.
Management: Admins ::: Moderators
Become a Team Member | Safety Guidelines for New | Site FAQ & Rules | Safety Matters | Online Safety | Rules For Blog Post